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Chain radius dependence on concentration
in a 2D living polymer system
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Abstract. A living polymer system is used to study the effect of concentration on a broad, polydisperse
two-dimensional polymer system. It is found that the mean squared end-to-end radius of a chain of L
monomers does not decrease by following a simple power law of the concentration but by a function of the
form R2(L, φ) = R2(L, 0)(1− cLεφ). An origin for such a behaviour is proposed.

PACS. 02.70.Lq Monte-Carlo and statistical methods – 64.75.+g Solubility, segregation, and mixing;
phase separation – 82.35.+t Polymer reactions and polymerization

Introduction

The effect of concentration on the polymer chain dimen-
sion has been studied by computer simulation [1–6], and
power-law dependencies using scaling argument have been
given [7].

A single, two-dimensional, self avoiding walk chain
made of L monomers has a mean squared end to end dis-
tance of the formR2(L) ∼ (L−1)1.5. In a two-dimensional,
monodisperse melt, where the mutual chain avoidance
plays a major role, the chains are globular with a mean
end-to-end square distance R2(L) scaling like L. It follows
in this last case that the local density φl = L/R2(L) is
therefore constant. This means also that only one chain
can be found in the space explored by a given chain.
In other words, the chains cannot penetrate each other.
Hence, in a two-dimensional system, a transition from a
fully swollen to a globular states occurs by increasing the
local density. In three dimension, the case is different: the
local density is always a decreasing power law function
of L. This allows, whatever the concentration, the pres-
ence of monomers of other chains in the space explored
by one chain. Hence chain in the melt are not globular.
Strictly speaking, the interpenetrating of chains in three
dimensions does not happen in the dilute regime. They
are first separated from each other at dilute concentration
and penetrate each other with increasing density [8]. In
two dimension, dilute chains are also separated but, un-
like in three dimensions, they do not seem to penetrate
each other with increasing concentration and the chains
are segregated at high concentration [3,7]. Otherwise, it
would mean that they first penetrate each others with
increasing concentration and then separate at higher con-
centration in order to reach the globular state.
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Considering that chains are non-interpenetrating in
two dimensions, the two-dimensional blob picture cannot
be like it is in three dimensions. In three dimensions, a
blob is defined as a part of the chain with correlations of
the excluded volume type. A dilute SAW is a chain made
of one blob. As the density increases, not only does a com-
pression of the chain at the chain border by other chains
occur, but the monomers of the other chains penetrat-
ing the coil screen the excluded-volume interaction of the
monomers belonging to the same chain. This last effect
allows a transition from a chain of N monomers made of
one blob of size N to a chain of N blobs of size one. In two
dimensions, the screening of intra-chain excluded volume
interaction by monomers belonging to other chains does
not exist.

In a three-dimensional melt or semi-dilute system of
polydisperse chains, the chains also interpenetrate each
other. In case of a long chain of contour length N in a
melt of short chains of contour length P , the long chain is
swollen under the condition P < N1/2 [7].

In two dimensions, it is not obvious that for broad
chain-size distributions a swelling of the greatest chains
by the shortest occurs. The recent development of the
study of equilibrium polymerization [9] by computer simu-
lation [10–13] can be used as a model for a highly polydis-
perse system of polymers, with an exponentially decaying
distribution of chain length C(L).

The chain distribution C(L) is so far not available ex-
perimentally but C(L) has been recently accurately stud-
ied by computer simulation [14].

〈L〉 = φαeE/2kT 0.5 ≤ α ≤ 0.84 (in 2D)

C(L) ∝

(
L

〈L〉

)γ−1

e−L/〈L〉 γ − 1 < 0.34 = γ2d − 1 (1)
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Fig. 1. Scaling plot of 〈R2
e〉 versus 〈L− 1〉 at various density:

φ = 0.25 (diamonds), φ = 0.49 (squares), φ = 0.9025 (circles).

where L is the degree of polymerization, E the energy
of binding between two monomers in a chain and φ =∑
l LC(L) is the total concentration in monomers.
This case is very favourable for chain swelling with a

few long chains among many small chains.
Computer simulations of monodisperse dense systems

in two dimensions have clearly shown non interpenetrat-
ing segregated chains [3] with chains packed in a hexagonal
array. Some doubts about the effective expansion of the
longer chains due to the presence of the short chains in
a polydisperse two-dimensional system have been cast re-
cently [12] in a computer simulation. These doubts were al-
ready mentioned in an older work [15] on equilibrium poly-
merization. The swelling can only be seen if the smaller
chains do really penetrate the longer chains.

Brief summary of the simulation procedure

The simulations in this work were conducted with the
same parameters as in [12]; where an extensive descrip-
tion of the simulation procedure can be found. The mean
end-to-end square distance R2(L) is given as usual in unit
of lattice spacing.

In the present study, the ends of a given polymer chain
are not allowed to bind together. This last condition avoids
the formation of rings [13,16] which gives a different length
distribution for even and odd chain length (in monomer
units) with temperature.

This is not really a constraint if we consider micellar
systems in which rings are not likely to occur [9].

The breaking of the chain reduces the non-ergodicity of
the algorithm [6]. In fact, it should suppress it completely;
it has been proved [17] that the slithering snake algorithm
with a non-L conserving algorithm is ergodic.

Results and discussion

Figure 1 displays the mean end to end square radius as a
function of L for three different values of the concentration
φ. Although the range of chain size is broad, only a single
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Fig. 2. Plot of the apparent exponent ν versus concentration φ.
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Fig. 3. Plot of R2
e(L) versus concentration φ for L = 5 (dia-

monds), L = 8 (squares), L = 10 (triangles), L = 13 (crosses).

regime is observed. This witnesses that the shorter chains
do not swell the greater one whatever the value of φ for
the range of contour length L investigated.

The exponent ν has been extracted using the depen-
dence of R2(L) on L−1 for various concentrations. The
values of ν clearly interpolates almost linearly between
the value for a SAW (ν = 3/4) to a value slightly above
the globular state, ν = 1/2 (Fig. 2). Figures 3 and 4 show
the decrease of R2(L) with increasing concentration φ at
some given values of L.

According to reference [1], the mean end to end square
radius behaves as given by a non reversal walk by ap-
proaching the melt density. It means that the chain be-
haves as if immediate step reversal is forbidden but dou-
ble occupancies with monomers other than the nearest are
allowed. We note that the explanation of reference [1] was
given for relatively short chains (typically eight-link self
avoiding walks).

In the following, a more general explanation than the
one proposed in [1] is developed. The decrease of R2(L) is
a linear function of φ and can be written

R2(L, φ) = A−Bφ (2)

which is qualitatively different than the power law seen in
3D. This expression is also different than what would be
expexted from a blob picture. The coefficients A and B
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Fig. 4. Plot of R2
e(L) versus concentration φ for L = 17

(squares), L = 30 (diamonds), L = 50 (crosses), L = 75 (tri-
angles).
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Fig. 5. Scaling plot of the coefficients A (squares) and B (di-
amonds) as a function of L− 1.

are given, however, by power-law functions of L (Fig. 5):

A = aL1.5,

B = bL1.83. (3)

The coefficient A is clearly the value R2(L) at φ→ 0 and
scales with L as expected with the exponent 1.5.

Equation (2) can be rewritten

R2(L, φ) = R2(L, 0)(1− cLεφ) (4)

where c = 0.21 numerically.

The value of 0.33 for the exponent ε is very near the
value of γ2d − 1 = 0.34. It is not ruled out that this value
comes from the number of possible way of forming a self-
avoiding walk on N steps:

<(N) ≈ N
L
Nγ−1 (5)

in the limit N →∞.

It simply means that the more extended chain config-
urations are gradually forbidden with increasing concen-
tration. Moreover, this rate is directly proportional to the
expanding factor Lγ−1. The data and explanations of the
authors of reference [1] can be seen as a particular situa-
tion of the present case for short chains, for which equa-
tion (5), only asymptotically correct, ceases to be valid.
Indeed, the value of B for chains of length L < 10 does
not fall on the scaling curve (Fig. 5). In reference [1], al-
though the 20-link chain shows a clear linear decrease with
φ, the decrease for 8-link chains is of poorer quality. This
is also observed in our case: the quality of the linear fit
is only very good for chains of more than 10 monomers.
The origin of this phenomenon and the interpretation of
the results of reference [1] are the following: short chains
behave essentially as non-reversal step chains. Indeed, the
excluded volume interaction comes essentially from the
nearest neighbour and not from the other monomers; the
chains are too short to allow the monomer of one end to
explore, for example, the same environment as the other
end. An excluded volume interaction between both end of
a short oligomer is therefore impossible. As a consequence,
there is for short chains hardly a distinction between SAW
and non reversal step behaviour.

Equation (4) has only a physical meaning provided
that cLεφ < 1. Long chains at high concentration can
not follow equation (4). It is expected that the longer
chains are in fact swollen in a dense living polymer sys-
tem [21]. Although this has been theoretically established
in 3D, the same appears to be true in 2D. A molecular
dynamics simulation has shown that the presence of large
disk-like solvent molecules in a system of 2D chains in-
duces a swelling of the chain [22]. However, this swelling
does not imply the penetration of the solvent molecule in
the coil. On the contrary, the chain is squeezed and fills
the space left between the solvent molecules. The smaller
chains with a globular conformation in the present system
behave as the disk-like solvent molecules.

Conclusion

The mean end to end square distance of a polymer chain
in a living polymer system as a function of the concen-
tration is not a power law function of the concentration.
The function determined by analysing the numerical re-
sults shows that the mean end to end square distance de-
crease is directly bound to the critical exponent γ. This
function ceases to be valid for very long chains since their
behaviour is strongly influenced by the smaller ones. The
similar behaviour of monodisperse chains found in the lit-
erature and the present polydisperse system for the chains
of contour length L < 10 is attributed to artifacts.

I thank T. Vilgis for helpful discussions and comments about
this work and H. Richards for a relecture of the manuscript.



324 The European Physical Journal B

References

1. F.T. Wall, W.A. Seitz, J. Chem. Phys. 67, (1977).
2. M. Bishop, D. Ceperley, H.L. Frisch, M.H. Kalos, J. Chem.

Phys. 75, 5538 (1981).
3. I. Carmesin, K. Kremer, J. Phys. France 51, 915 (1990).
4. F.T. Wall, J.C. Chin, F. Mandel, J. Chem. Phys. 66, 3143

(1977).
5. O.F. Olaj, W. Lantschbauer, Makromol. Chem. Rapid.

Commun. 3, 847 (1982)
6. K. Binder, D.W. Heermann, Monte-Carlo Simulation in

Statitical Physics (Springer-Verlag, Berlin, 1992); K. Kre-
mer, K. Binder, Comp. Phys. Rep. 7, 259-312 (1988).

7. P.G. de Gennes, in Scaling Concepts in Polymer Physics
(Cormell University Press, Ithaca, 1979) Ch. 3.

8. S.F. Edwards, Proc. Phys. Soc. 88, 265 (1966).
9. M.E. Cates, S.J. Candau, J. Phys. Condens. Matter. 2,

6869 (1990).

10. Y. Rouault, A. Milchev, Phys. Rev. E 51, 5905 (1995).
11. A. Milchev, D.P. Landau, Phys. Rev. E 52, 6431 (1995).
12. Y. Rouault, J. Phys. II France 6, 1301 (1996).
13. G.F. Tuthill, J. Chem. Phys. 90, 5869-5872 (1989).
14. Y. Rouault, A. Milchev, Phys. Rev. E 55, 2020 (1997).
15. E.S. Nikowarov, S.P. Obukhov, Sov. Phys. JETP 53, 328

(1981).
16. G.F. Tuthill, M.V. Jaric, Phys. Rev. B 31, 2981-2985

(1985).
17. N. Madras, A.D. Sokal, J. Stat. Phys. 50, 109 (1988).
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